If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 4[2 + -1(3(c + 1) + -2(c + 1))] = -2c Reorder the terms: 4[2 + -1(3(1 + c) + -2(c + 1))] = -2c 4[2 + -1((1 * 3 + c * 3) + -2(c + 1))] = -2c 4[2 + -1((3 + 3c) + -2(c + 1))] = -2c Reorder the terms: 4[2 + -1(3 + 3c + -2(1 + c))] = -2c 4[2 + -1(3 + 3c + (1 * -2 + c * -2))] = -2c 4[2 + -1(3 + 3c + (-2 + -2c))] = -2c Reorder the terms: 4[2 + -1(3 + -2 + 3c + -2c)] = -2c Combine like terms: 3 + -2 = 1 4[2 + -1(1 + 3c + -2c)] = -2c Combine like terms: 3c + -2c = 1c 4[2 + -1(1 + 1c)] = -2c 4[2 + (1 * -1 + 1c * -1)] = -2c 4[2 + (-1 + -1c)] = -2c Combine like terms: 2 + -1 = 1 4[1 + -1c] = -2c [1 * 4 + -1c * 4] = -2c [4 + -4c] = -2c Solving 4 + -4c = -2c Solving for variable 'c'. Move all terms containing c to the left, all other terms to the right. Add '2c' to each side of the equation. 4 + -4c + 2c = -2c + 2c Combine like terms: -4c + 2c = -2c 4 + -2c = -2c + 2c Combine like terms: -2c + 2c = 0 4 + -2c = 0 Add '-4' to each side of the equation. 4 + -4 + -2c = 0 + -4 Combine like terms: 4 + -4 = 0 0 + -2c = 0 + -4 -2c = 0 + -4 Combine like terms: 0 + -4 = -4 -2c = -4 Divide each side by '-2'. c = 2 Simplifying c = 2
| ln(x-4)+ln(x-14)=ln(x^2) | | 6x(7x-6z)= | | 20+16z=11z | | 81+7y=-2y | | -2x+14=8+4x | | 3m+14=6+2m-12 | | -4s=5s+9 | | 5x+15=3(2x+6) | | -4s=5s+9 | | -48=-5(4+4x)+8(x-8) | | -16=x+17 | | 1-7x-10=26 | | (x-41)+(x-49)=8 | | M=2y-p | | 10-7v+4=-10-10v | | 2x^2+5x+48=0 | | 4a+ab-15b^2= | | -6x-12-3x=9x+6 | | -4k+2=-10-6k | | x=-3.428571429+0.1428571429x | | 6(1+7m)=-5m+6 | | 11m+13=m-23 | | 3(4b+6)+7(5b-8)=-38 | | 2(2x-5)=7x+8 | | -4(3x-2)=-33 | | (2x-7)(3x^2+5x-2)= | | 9+-5(-4)=12+-1[6(-4)+7] | | 16+5k-2k=37 | | -2n=-28 | | V-15=-1 | | -5p+47=12 | | 3x+5+6x-7=26 |